Solid Waste Landfills as a Repository for ABR

Timothy G. Townsend, PhD, PE
Department of Environmental Engineering Science
University of Florida

February 13-14, 2006 Rio Rico, Arizona

Disposal of Arsenic-Bearing Water Treatment Residuals: Assessing the Potential for Environmental Contamination

Topics

- Types of landfills
 - Regulations
 - Engineering Controls
 - Chemical environments
- Fate of metals/metalloids in landfills
 - Concerns
 - Factors affecting risk to environment
 - Leachability

Types of Landfills

- Hazardous waste landfills
- Municipal solid waste landfills
- Other types
 - Construction and demolition debris
 - Industrial waste landfills

Hazardous Waste Landfills: RCRA Subtitle C Landfill (40 CFR 264)

Typical Subtitle C Liner

Double Liner

2 ft drainage material Designed to maintain less than 1ft head on liner

HDPE Geomembrane HDPE Geomembrane

3 ft compacted soil K <= 10⁻⁷ cm/sec

MSW Landfills: RCRA Subtitle D Landfill (40 CFR 258)

Typical Subtitle D Liner

Single Composite Liner

Leachate is then sent to Treatment and/or Storage Facility

Leachate Recirculation to Landfill using Spray Irrigation

Leachate Recirculation to Landfill using Horizontal Trenches

Waste Stabilization in MSW Landfills

Waste Stabilization in MSW Landfills

Concentrations in MSW Landfill Leachates

Statistic	Arsenic	Lead
Number Samples	2,444	2,539
% Detected	71.1	50.2
5 th Percentile	4	2
10 th Percentile	6	4
Median	20	21
Mean	441	133
90 th Percentile	100	250
95 th Percentile	260	500
GWCTL	50 (10)	15

Arsenic in Florida Landfill Leachate

Other Landfill Types

 Construction and demolition (C&D) debris landfills

Industrial waste landfills

C&D Debris Landfill

Unlined Landfill for Hurricane Katrina Debris

Concentrations in C&D Debris Landfill Leachates

Statistic	Arsenic	Lead
Number Samples	48	68
% Detected	54.2	60.3
5 th Percentile	5	2.9
10 th Percentile	8	4
Median	32.5	40
Mean	34.9	122
90 th Percentile	75	220
95 th Percentile	77.3	360
GWCTL	50 (10)	15

ABR Disposal?

- Hazardous waste disposal unlikely
- MSW landfill (would probably accept if ABR meets liquids restrictions)
- Other (depends on state regulations)

Ferric coagulant drinking water sludge in Florida

Metal-bearing wastes are disposed in landfills

Mercury Lamps

Potential Problems Posed

- Groundwater contamination (primarily an unlined landfill issue)
- Impact on leachate quality
- Impact on gas quality (e.g., Hg)
- Long-term operation issues

Factors to be Considered

Leachability

Rainfall and amount of leachate

Fraction in the landfill

Important Point

 A majority of the waste in modern landfills stays dry

Incorrect Perception

More Accurate Perception

A Few Comments on Leaching

- Several studies show that TCLP may not be reflective of leaching that will occur in a landfill for some wastes.
- TCLP does not always under predict leaching.

Leaching in MSW LF Leachate

CCA-Treated Wood

Printed Wire Boards

Many Reasons for the Difference

- pH
- Leachate chemistry
- Redox conditions
- Interactions with waste and other chemicals in leachate
 - Precipitation
 - Sorption

Leaching from CCA Sawdust Sample

Arsenic Leaching from GFH Sludge

Simulated Landfills

16 feet

3 Smoke detectors mixed into middle of lift -

Two Lifts of Waste

1 CPU mixed into middle of lift

Smoke Detectors

Two Lifts of Waste

1 monitor mixed into middle of lift

CPU

Smoke Detectors

Two Lifts of Waste

Monitor

CPU

Smoke Detectors

Two Lifts of Waste

4 Cell Phones and 8 Ni-Cd Batteries

Keyboard and Mouse

Monitor

CPU

Smoke Detectors

Two Lifts of Waste

Box Plot of Leachate Lead Concentrations

(Leachates with pH less than 7 in cyan, pH greater than 7 in yellow)

Arsenic vs. Time in C&D Lysimeter Leachate

Arsenic Concentration in CCA Lysimeter Leachates from Three C&D Lysimeter Projects

Comparison of concentrations of metal leached between aerobic and anaerobic lysimeters

Al: aerobic > anaerobic As: aerobic < anaerobic

Comparison of concentrations of metal leached between aerobic and anaerobic lysimeters

Cr: aerobic > anaerobic Cu: aerobic > anaerobic

Comparison of concentrations of metal leached between aerobic and anaerobic lysimeters

Pb: aerobic > anaerobic Mn: aerobic < anaerobic

Lead Leaching from CRT Glass: Impact of pH

